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Abstract-This study presents a theoretical relationship between coating thickness on an object immersed 
in a fluidized bed of coating material and the physical properties of the system. 

The theory of flmdized bed coating was developed using the heat-balance integral in solving the problem 
of heat-conduction with a moving boundary as applied for the coating film. In developing the theory, the 
temperature profile within the coating film was represented by a second-degree polynomial. 

The theoretical solution was compared with experimental data given in the literature. The agreement is 
good. On the average, the theory predicts coating thicknesses that are higher than the experimental ones by 
about 10 per cent. This deviation is attributed mainly to the assumption of constant object and coating 
film temperature made in the theory. 

The heat-transfer coefficient is a major factor in the fluidized bed coating process. Coating data reported 
in the literature. do not generally give the heat-transfer coefficient in the fluidized bed. A graphical method 
for estimating the heat-transfer coefficient was developed for experiments where final thickness data are 

reported. 

NOMENCLATURE 

; (T/ - T,), [h”F/ft2] ; 

biot number, s X,, dimensionless ; 

specific heat of coating material, 
[Btu/lb”F] ; 
heat-transfer coefficient, [Btu/hftZ F] ; 
thermal conductivity, [Btu/hft” F] ; 
immersion time [h] ; 
softening point of coating material 

[“Fl ; 
object temperature [“F] ; 
fluidized bed temperature [“F] ; 
final coating thickness [ft] ; 
coating thickness [ft] ; 
density of coating material [lb/ft] ; 
thermal diffusivity, [fP/h] ; 

T, - T/ dimensionless temperature, T _ T . 
/ c.2 

INTRODUCTION 

THE fluidized-bed system for coating metals 
with plastics has developed from a laboratory 
curiosity barely thirteen years ago to a routine 
process in operation today in more than 360 
major companies [7]. Applications are in- 
creasing in the appliance, chemical processing, 
electrical, power distribution and pipeline fields. 

In the fluidized-bed coating process, a fusible 
polymeric resin in powder form is applied to 
the surface of an object that is immersed in a 
bed or chamber of powder through which a 
current of gas is passed. The gas serves to 
levitate the resin powder in such a manner that 
it resembles a boiling liquid in appearance. The 
object is heated to a temperature high enough 
above the melting or softening point of the 
resin so that, after the object is removed from 
the heat source, it retains enough heat on its 
surface to melt the resin powder particles, 

1097 



1098 CHAIM GUTFINGER and W. H. CHEN 

which then stick fast, melt, and flow together to 
form a coating. 

In fluidized-bed coating, there are a number of 
variables that can affect the thickness and 
uniformity of coating layers applied to the 
objects. The major variables affecting the thick- 
ness of coating layer are object temperature, 
immersion time, bed temperature, velocity of 
fluidizing gas, particle size, shape and size 
distribution of the resin powder, and the 
physical properties of object, powder and 
carrier gas. 

In spite of the widespread use of the fluidized- 
bed coating process and the many experiments 
done, no coating theory has been developed to 
date. In the present paper, an attempt has been 
made to present a theory that will correlate the 
coating thickness with the other coating para- 
meters. 

FLUIDIZED-BED COATINGSTATEMENT OF TJ3E 
PROBLEM AND ASSUMPTION 

The discussion presented in this paper deals 
with the growth of coating films on vertical 
plates in a fluidized bed. We consider one- 
dimensional heat conduction in a coating film 
that extends from x = 0 to x = X(t). The face 
x = 0 is the object surface. If the surface 
temperature, K, is at or above the melting or 
softening point, Tf, the coating commences. 
If the surface temperature, q, of the film drops 
below Tf, the growth of the coating film stops 
and X(r) remains constant. The thickness of 
the coating film X(t) as a function of time is the 
quantity we wish to find. 

The equation describing the process is as 
follows : 

a aT 
PC;=% kx 

[ .I (1) 

with boundary conditions 

T(0, 0) = T, > T, (2) 

T(0, t) = T,(t) (3) 

T[X (r), r) = T,(t) (4) 

-kg 
ax x=X(t) 

= h(T, - T,) 

+pc(Ti - Ta)F. (5) 

Equation (5) expresses the fact that heat 
conduction at the surface of the coating film 
equals the heat flow into the fluidized bed by 
convection plus the heat absorbed by the bed 
particles that adhere to the object and form the 
film. In this energy balance, we neglect the heat 
loss by radiation. It is apparent that the con- 
vective transfer of heat far outweighs all other 
types of heat transfer in a fluidized bed system. 

The essential difficulty in the problem is in 
the determination of the unknown moving 
boundary, X(t). This is a non-linear problem 
because it involves a moving boundary whose 
location is unknown a priori. We were unable to 
treat it in an exact analytical manner; thus, we 
had to choose between alternative methods of 
either using a high-speed computer or of finding 
an approximate solution under some simplifying 
assumptions. The latter course was taken. 

In the present paper the discussion is limited 
to cases where the following assumptions apply : 

1. The thermal properties of material, p, c, k, 
are constant for a particular material 
during the coating. 
The temperature within the fluid&d bed 
is uniform throughout and constant. 
The temperature of the particles and the 
fluid is the same. 

6. 

The object temperature, T,, is constant 
during the coating process. 
The surface temperature of the coating 
film, Ti, is constant and equals the melting 
or softening point of the material, T,. 
The thickness of films does not depend on 
orientation of the coated object in the 
fluidized bed. 

7. The heat-transfer coefficient between the 
object and the fluidized bed is constant 
during coating. 

8. Changes in the heat-transfer coefficient 
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9. 

over the height of the object are negligibly 
small. 
The existence and uniqueness of T(.u,t) 
and X(t) are assumed. 

Assumption 9 is adopted from the classical 
moving boundary problem known as the Stefan 
problem [3]. 

The most questionable assumption is No. 4. 
In reality the temperature of the coated object 
decreases during the coating process. The 
assumption of constant T,,, is equivalent to that 
of a large heat reservoir kept isothermally. In 
many applications of fluidized-bed coating the 
condition of a constant-temperature reservoir 
can be approximated. In most cases a plastic 
powder which is a good insulator is used to 
coat a metal object-a good conductor. Thus, 
the assumption of constant temperature within 
the metal solid is reasonable. In those cases 
where this assumption does not hold, such as in 
coating of thin wires, the present solution can 
be viewed as an upper bound on the coating 
thickness. 

Using the assumptions made above, the equa- 
tions describing the process are : 

8T a2T 

at=% (6) 

with the boundary conditions 

T(O,O) = T, > T, (7) 

T(0, t) = T, (8) 

T(W), t) = T, (9 

-kar 
ax x=X(t) 

=h(Tf - T,) 

+/MT, - T+- dX@) (10) 

These equations can be further limited to a 
narrower class of heat-transfer problems by 
neglecting the convective term in equation (10). 
This will be done later on in the solution of a 
special case, in order to demonstrate a limiting 
behavior of the general solution. 

APPROXIMATE SOLUTION OF THE FLUIDIZED 
BED COATING PROBLEM 

As mentioned above, the heat transfer prob- 
lems involving a moving boundary are non- 
linear, and, except in very special cases [l], can 
be solved either by using high-speed computers 
or by some approximate technique. In this 
paper, we solve the heat-transfer problem in 
fluidized-bed coating by using the heat balance 
integral method [2]. For the one-dimensional 
case, the equation determining the thickness of 
the coating film reduces to an ordinary differen- 
tial equation when this method is applied. Thus, 
it can be solved analytically or numerically. 
These solutions, although not exact, are accurate 
enough to be of practical use. We may also note 
that our main interest is the determination of 
film thickness as a function of time, rather than 
the temperature distribution in the film. Minor 
variations in the temperature profile inside the 
film are of secondary importance to the build 
up of film thickness taking place on its surface. 

Returning to the mathematical problem, we 
now multiply both sides of equation (6) by dx 
and integrate from x = 0 to x = X(t). 

J”“’ s XV) 

;dx=a 
d2T 
2 dx. (11) 

0 0 

Equation (11) is called the heat balance integral. 
Applying Leibnitz’ rule on the left-hand side 

of equation (11) and integrating the right-hand 
side, one obtains 

X(0 

d 

dt s 
Tdx - T, F 

0 

aT 
=“aX - ax [ 1 aT - I 1 * (12) 

x=X(t) x=0 
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Combining equation (12) with (10) results in and 13 is a dimensionless temperature defined as : 

X(0 

d 

z s Tdx = Tay 

0 

h 

Now we assume that the temperature profile 
within the film can be represented by a second- 

e= 
T, - Tf 

Tf - T, 
(17) 

Physically 8 represents the driving force for the 
coating process. The coating will not take place 
at 8 = 0 and the larger 6 the higher the coating 
rate. 

To find a relationship for the coating thick- 
ness, X(t), as a function of time, we integrate 
equation (13) after substituting the expression 
for T into it and performing the necessary 
algebra. The resulting time-thickness relation- 
ship is : 

X(0 
;r ;5-2 

t= 1 ( ‘I 2&3 
L 5 dl. 

J, 4e+2- 

degree polynomial in the form : 

T= a + b[X(t) - x] + c[X(t) - x]’ (14) 

where the coefficients a, b, c, may depend on 
time t. Since there are three coefficients in 
equation (14), three conditions are necessary. 
Equations (8) and (9) constitute two conditions ; 
the third one is the combination of equations 
(6), (9), and (10). Substitution and simplification 
results in the following expression for the 
temperature profile which is consistent with the 
boundary conditions 

T=Tf++(Tf-T,) ;X(t)+F(x)-2 1 _ 

[ 1 l-g) -t(T,- T,) 

X(t) + F(x) - 2 - 28 ] [1 - &j2.(15) 

Where 

F(x) =,/I[; X(t) - 212 + 86’ / (16) 

(18) 

3 ; 5 - F(5) 
K 

The integral in equation (18) can most easily 
be evaluated by graphical integration. 

When the denominator of equation (18) is 
set to equal zero, the value of the integral, or 
the time will be infinity. This means that the 
growth of coating film stops and that the final 
coating thickness, X,, is reached. Thus, for final 
thickness 

48+2-3:x,- J[(hxf-2)2+8e]=o. 

(19) 

Introducing the Biot number, Bi = (h/k)X,, 
into equation (19) results in 
48 + 2 - 3Bi - J[(Bi - 2)2 + Se] = 0. (20) 

Solving equation (20) we get the very simple 
relationship between the Biot Number and 
dimensionless temperature 

or 
Bi = 8 (21) 

hx = T, - T/ 
k f Tf - T,’ 

(22) 



From equation (21), we see that, for a given 8, in Fig. 1. This figure is the most general plot of 
the Biot number is fmed and is equal to it. This the solution. Figure 2 is more explicit. It presents 
means that the final thickness is proportional 2-o 

to k and inversely proportional to h. In other 
r 

words, a plot of Xf vs. k will give a straight line, 0= 2.0 

while X, vs. h will yield a hyperbola. Equation 
(22) may be used for finding the heat-transfer 
coe&ient in the fluidized bed from experimental 

1.5- 

data. The detailed procedure is described in the 
Appendix. 

Equation (18) contains three dimensionless sr: T re=‘.5 

groups necessary to define the problem. (h/k) X 
qt I.0 

X/J(d) and 8. The group (h/k) X is essentially 
a dimensionless film thickness. However, 
X/&t) is not a convenient group, as it lumps 
together the dependent variable X with the 0.5 

independent variable t. To overcome this difi- 
culty we eliminate X between the first two 
groups and come up with a dimensionless 
time [h*/pck] t. Now we are ready to plot the 

1 
I I 

results of the graphical integration of equation 
0 I.0 2-o 3.0 4.0 5.0 

(18) as dimensionless film thickness versus 
[j--l ’ 

dimensionless time with the dimensionless tem- 
perature 8 as a parameter. This has been done 

FIG. 1. Dimensionless thickness as a function of dimension- . ._^ 
less time with tl as a parameter. 
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FIG. 2 Plot of coating thickness (X) vs at for various h/k 
and 0 = 1. 
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the coating thickness as a function of crt with 
h/k as a parameter for the special case of 0 = 1. 
The heat conductivity k is a property of the coat- 
ing material that cannot easily be changed. The 
heat-transfer coefficient h, however, can be 
changed quite readily by changing any one of 
the parameters of the fluidized bed, such as the 
air velocity. Figure 2 shows that the effect of 
the heat-transfer coefficient on the coating 
thickness is very pronounced. The higher the 
heat-transfer coefficient, the thinner the coating 
thickness because of higher heat loss to the 
surroundings. 

A plot of final coating thickness, X,, vs. 
softening point, Ts, with the heat transfer 
coefficient as a parameter is shown in Fig. 4. 
As seen in this figure, the change in final coating 
thickness with the softening point of the coating 
material is more pronounced at lower heat- 
transfer coefficients. 

120 

I\ 

f=250ft_’ I;=5OO*F 

T,= 75°F 
100 

To demonstrate the sensitivity of the solution .E I \ 
to various parameters, we plotted the coating 
thickness vs. immersion time for typical working 
conditions. Figure 3 presents coating thickness 

50 

I 

45. 

T,=500°F 160 200 240 280 320 360 400 440 480 520 

Softening point 5, OF 

T,=410°F 

FIG. 4. Final coating thickness (X,) as a function of softening 
point of coating material (TI) for various heat transfer 

coefficients (h). 

b=34 EiulhftZoF 
h =0.097 BWhft’F 
a .0.00286ftz/h 

T,:29t?OF 
T,= 75-F 

I 
0 5 IO 15 20 25 30 35 

Immersion time,t, s 

Effect of immersion time (t) and object temperature 
(T,) on coating thickness (X) for a typical coating process. 

From equation (18), it seems that the para- 
meters that affect the coating thickness are only 
the object temperature, fluidized-bed tempera- 
ture, and the properties of the coating material. 
Actually, there are some parameters that affect 
the coating thickness indirectly because the 
heat-transfer coefficient is governed by the fol- 
lowing factors [51: 

vs. immersion time curves for various object 
temperatures. From this Figure it is obvious 
that the coating thickness is a strong function 
of object temperature. The object temperature 
has a more pronounced influence on coating 
rate in the case of long immersion times. 

(1) Properties of the materials 
(a) Fluidizing gas : thermal conductivity, den- 

sity, viscosity. 

fit heat. 

(b) Fluidized powder : thermal conductivity, 
shape, size, size distribution, density, speci- 
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(2) Design of jluidized bed 

Location and geometry of heat transfer 
surface, size of fluidized bed 

(3) Operating conditions 

Flow rate of fluids, feed or recycle rate of the 
powder, concentration of the powder in the 
bed, temperature level and magnitude of the 
temperature driving forces, etc. 

Thus, these variables are indirect factors that 
can affect the coating thickness. 

SOLUTION FOR THE CASE OF NO CONVECTION 

In this section, we derive the solution for the 
coating thickness for the case where heat 
transfer by convection into the fluidized bed 
can be neglected. This solution will provide an 
upper bound on the coating thickness that can 
be achieved in fluidized-bed coating; that is, one 
can find what is the maximum coating thickness 
that can be obtained by changing the condition 

Dimensionless temperature, 0 

FIG. 5. Dimensionless coating thickness as a function of 
dimensionless temperature for no heat convection. 

of fluidization in the direction of reducing h. 
Letting h = 0 in equation (18), we get 

t= s (V3a) PO + 5 + JW + 
40+2-2,/(28+1) 

Ntdc 

0 (23) 

Integrating and rearranging, we get 

- - 
&, - [ 

12 [2e + 1 - J(2e + l)] 

28 + 5 + Jge + 1) 1 * (24) . 
A plot of X/,/(at) vs. 8 is shown in Fig. 5. 

Looking at equation (24), we see that, for a given 
8, X/,/(at) is a constant. This means that the 

35 

i 

34 

.’ 25- 

“0 
x 
% 
6 
z 

io- 

5 h=52.5 Etu/hflZaF 

g a=000286 ft?h 

‘, 

h=O097 Btu/hfl°F 

15- %=59O’F 
.E 
z 

s 
IO- 

3 

5 

, 
0 5 IO I5 20 25 30 35 

Immersion time,f, s 

FIG. 6. Plot cf coating thickness (X) vs. immersion time (t). 
Comparison between theory and experimental data of 

Pettigrew [6]. 

coating thickness is proportional to the square 
root of time. For this case there is obviously no 
final thickness, as for constant object tempera- 
ture and no heat convection to surroundings the 
thickness of the film will grow indefinitely. 

COMPARISON OF THE THEORETICAL SOLUTION 
WITH EXPERIMENTAL DATA 

The theoretical solution for the coating thick- 
ness was developed under the simplified assump- 
tions discussed above. In this section we com- 
pare the simplified theoretical solution with 
some experimental data from the literature. 
This comparison will show us whether or not 

H 
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the approximate theoretical solution can pro- The preheat temperature is 650’F for 
vide answers for practical coating problems. Fig. 6 and 550°F for Fig. 7. 

Experimental studies of fluidized-bed coating 
processes were carried out by Pettigrew [IS], 
Richart [7], and Lee [4]. In reporting the 
experimental data, Pettigrew gave more details 
on the operating conditions than the others, 
Thus, the comparison of the theroetical solution 
and Pettigrew’s experimental data is straight- 
forward. while, for the other data, one has to 
estimate some of the coating parameters. 

4. Final temperature during coating. 
The object temperature is 590-F for data in 
Fig. 6 and 510°F for those in Fig. 7. 

5. Fluidizing air velocity. 
The air velocity is 4.9 ft,/min. 

The experimental data given by Pettigrew 
are shown as coating thickness vs. immer- 
sion time in Figs. 6 and 7 with the coating 
thickness calculated from theoretical equation 
(18). The operating conditions are : 

As mentioned above, the heat-transfer coeffici- 
ent is a major factor in the fluidized-bed coating 
process. The coating data reported in the 
literature do not generally give the heat-transfer 
coefficient in the fluidized bed ; thus, we have to 
estimate the heat-transfer coefficients of fluid- 
ized beds from their operating conditions. The 
heat-transfer coefhcient used in the calculation 
of the theoretical solution from equation (18) 
as presented in Figs. 6 and 7 is found by a 
graphical method from experimental data of 
final coating thickness. The detailed proce- 
dures are described in the Appendix. The value 
of the heat-transfer coefficient used in Figs. 6 
and 7 is 52.5 Btu/h ft*“F. Richart’s [7] experi- 

30 

I 

.E 25 

G - i 

Ir =52,3 Btu/hftZ*F 
(i =OGXXf6 ft’/h 
~=0~097Btu/hft’F 
1_=5tO’F 
T, = 29aDF 
T,=75*F 

I 1 

0 5 IO I5 20 25 30 35 

Immersion time, f, 5 

FIG. 7. Coating thickness (X) as a function of immersion 
time (0. Comparison between theory and experimental 

data of Pettigrew {6]. 

1. Coating material. 
The experiments were performed using 
Corvel vinyl resin VCA-1289. 

2. Object material and size. 
The objects were made of 4 x 3 x & in. 
cold-rolled steel. 

3. Preheat cycle. 

50 

I 

II :34 Btu/hftZeF 
cx =040286 ft?‘h 
X=0.097 Btulhft’F 
Tw=6OO~F rr a29a’F 
r,=75*F 

Immersion time,#, s 

FIG. 8. Plot of coating thickness (X) vs. immersion time (0. 
Comparison between theory and experimental data of 

Richart [7]. 
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mental data are shown as plots of coating thick- 
ness vs. immersion time in Figs. 8 and 9 
together with the curves for coating thickness 
calculated from equation (18). The operating 

h =34 t3tulhftZeF 
a ‘0.00266 1+/h 
& =0.097Etu/hfteF 
T,,zSOO’F 
T, =29o’F 
T,= 75OF 

I 
0 5 10 15 20 25 30 35 

Immersion time.t, s 

FIG. 9. Effect of immersion time (t) on coating thickness (X). 
Comparison between theory and experimental data of 

Richart [7]. 

conditions are shown in the figures. Since 
Richart’s [7] experimental data do not give 
final coating thicknesses, we couldn’t find the 
heat-transfer coetIicient by a graphical method 
as we did in the case of Pettigrew’s [6] data. 
Thus, we used the operating conditions given by 
Richart [7] to estimate the heat-transfer coeffici- 
ent from the literature. We found the heat- 
transfer coefficient for similar conditions from 
Mickley and Trilling [5] as 34 Btu/h ft’“F and 
used this value to calculate coating thicknesses 
shown in Figs. 8 and 9. 

As seen in Figs. 6 through 9, the agreement 
between the theoretical predictions of equation 
(18) and the experimental data given in the litera- 
ture is good. For object temperature, T, = 
6OO”F, the coating thicknesses predicted by 
theory are, on the average, 10 per cent higher 

than experimental data ; for T, = 510”F, they 
are 12 per cent higher. The maximum deviation 
in coating thickness was less than 30 per cent. 
The higher thickness predicted by theory is 
attributed to the assumption of constant object 
and coating film surface temperatures. Other 
factors that may account for deviations between 
the theory and the experiments are the uncer- 
tainty of the heat-transfer coefficient, and the 
temperature profile within the coating film 
represented by a second-degree polynomial. As 
seen in Fig. 2, the coating thickness is a strong 
function of the heat-transfer coefficient. A small 
change in the heat-transfer coefficient will have 
a pronounced influence on the coating thick- 
ness. Since Richart’s [7] operating conditions 
were not identical to those of Mickley and 
Trilling [5], the heat-transfer coefficient found 
from the literature was not very accurate. This 
could certainly introduce some error into Figs. 
8 and 9. One could expect better agreement 
between theory and experiment if the heat- 
transfer coefficient data were available. Relaxing 
the assumption of constant object and coating- 
film surface temperatures could also improve 
the validity and range of the theoretical solution, 
but it would do so at the expense of simplicity. 

DISCUSSION AND CONCLUSIONS 

In the present study an attempt was made to 
develop a theoretical relationship between film 
thickness in fluidized-bed coating and the 
physical properties of coating material, the 
object temperature, the fluidized-bed tempera- 
ture, and the coating time. The theoretical 
solution was compared with experimental data. 
As seen in Fig. 6 through 9, it can be stated that 
this attempt was successful. 

The weak points in the developed theory were 
the following assumptions : 

1. The object temperature is constant. 
2. The surface temperature of the coating film 

is constant and equals its softening point. 
3. The temperature profile within the coating 
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film is represented by a second-degree 
polynomial. 

Assumption 1, which probably holds in the 
case of short immersion times, is questionable 
for long immersion times. 

Assumption 2 is a very questionable assump- 
tion in the developed theory. The temperature on 
the surface of the coating must remain higher 
than the softening point of the polymer if the 
coating is to continue to build up. 

Following Goodman [2], it is expected that 
a cubic temperature profile within the coating 
film would give a considerably more accurate 
solution than that using Assumption 3. 

The following conclusions may be drawn 
from the present study : 

1. The fluidized-bed heat-transfer coefficient 
is the most significant factor in the coating 
process. A small change in the heat-transfer 
coefficient (see Fig. 2) will produce a large change 
in thickness. The smaller the heat-transfer 
coefficient, the thicker the coating film. The 
maximum coating thickness is predicted by 
equation (25) which was derived for the limiting 
case of no heat transfer to the fluid&d bed. 

2. We can control the thickness of the coating 
film as a function of time by adjusting the object 
temperature, the fluidized-bed temperature, or 
the heat-transfer coefficient. The heat-transfer 
coefficient is governed by the properties of 
fluidizing gas and fluidized particles, the design 
of the bed, and the operating conditions. All 
these design parameters can be controlled and 
modified to suit the coating problem at hand. 

3. All portions of the object to be coated do 
not have equal residence times in the bath due 
to immersion and withdrawal time. The easiest 
way to achieve uniform coatings is to choose 
working conditions, such that the coating thick- 
ness becomes a weak function of time. One, 
therefore, should work in the flat regions of the 
curves given in Fig. 1. 

4. The predicted coating thickness for higher 
object temperatures is better than that for lower 
object temperatures. This is seen in Figs. 6 and 7. 

5. The predicted coating thickness is slightly 
higher than experimental data because of the 
assumption of constant object and coating sur- 
face temperature. Due to the latter assumption, 
larger deviations are expected with objects 
having a relatively high surface to volume ratio, 
such as in thin plates. For these cases, one would 
have to replace the constant object temperature 
with a total heat balance performed on the ob- 
ject. Although the problem appears easy in 
principle, it is involved enough as to prevent us 
from obtaining a simple solution to it. Thus, 
this problem is left for a future effort. 

We feel that at present the solution obtained 
is accurate enough and simple enough in order 
to attract the practising coating technologist. 
On the other hand, it is basic in its approach 
and the assumptions made, though robust, are 
reasonable and pass the test of experiment. 

The authors are indebted to Professor Octave Levenspiel 
for introducing them to the field in fluidized-bed coating. 
Discussions with Professor A. C. Cogley resulted in a 
marked improvement in the paper content. 
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APPENDIX 

~e~~~ of Finding Heat- Tr~fe~ 
~oef~~i~~s from E~~e~~n~al Data 

As mentioned above, if data of the final 
thickness of film vs. object temperature are 
available, we can find the heat-transfer coeffrc- 
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ient, h, directly from the experimental data. Equation (A.2) expresses the fact that heat 
The discussion presented in this Appendix conduction at the surface of the coating film 
provides a method of fmding the heat-transfer equals the heat flow into the fluid&d bed by 
coef%ient from experimental data. convection. 

Under the assumption we made above, the Integrating equation (A.2) from .y = 0 to 
’ energy balance equation at the surface of the x = X,, and rearranging, we obtain 

coating film is 

- k g = h(Tf - T,) T, = Tf + (Tf - 7$x, fA.3) 

ax(t) 
+ WV, - co)~ (A4 

When the coating film reaches its final thick- 
Equation (A.3) can also be obtained by 

ness, the growth of coating film stops and 
rearranging equation (22). 

equation (A.1) becomes 
If we plot the object temperature T,, versus 

the final thickness X,, a straight line is obtained. 

- k g = h(Tr - Td 64.2) 
The intercept of this line yields Tf and its 
slope-the heat-transfer coefficient h. 

R~um&--Cette etude presente une relation thriorique entre l’epaisseur du rev&ement sur un objet inunergt 
dans un lit fluidise du materiau du revetement et les proprietea physiques du sysmme. 

La thbrie du revetement par lit fluidise a et6 exposQ en employant l’integrale du bilan de chaleur pour 
r&soudre le problemme de la conduction de la chaleur avec une front&e mobile applique au revetement. 
Dans l’expod de la the&e, le profil de temperature dam le revetement a be repr6aent6 par un polynbme 
du second degre. 

La solution theorique a et6 cornpa& avec un bon accord aux r6sultats experimentaux don&s dans la 
Iitt~ratu~, En moye~e, la th&nie p&lit des epaisseurs de revetement qui sent plus elev4es que lea valeurs 
exp&rimemales d’environ 10 pour cent Cette deviation est attribuee principalement a l’hypothtse faite 
darts la th&orie d’une temperature constante de l’objet et de la surface du revetement. 

Le coefficient de transport de chaleur est un facteur principal dam le processus de revetement par lit 
fluidist. Les rtsultats sur le revetemenf signal& dans la litterature ne donnent pas gentalement le co- 
efficient de transport de chaleur dam le lit fluidise. Une methode graphique pour estirner le coefficient 
de transport de chaleur a et& exposee pour des experiences oti I’on donne les r&hats pour l’epaisseur 

finale. 

Zasammeufassung-Diese Untersuchung liefert die theoretische Beziehung zwischen der Beschichtungs- 
dicke eines Korpers, der in ein Fliessbett aus Beschichtungsmaterial getauscht ist und den physikalischen 
Eigenschaften des Systems. Die Theorie der Fliessbettbeschichtung ergab sich mit Hilfe des W&me- 
bilanzintegrals bei der L&rung des Problems der WLrmeleitung mit bewegter Grenze filr die Beschichtung. 
In der The&e wurde das Temperaturfeld in der Beschichtung durch ein Polynom zweiten Grades 
wiedergegeben. 

Die theoretische Losung wurde mit ex~~enteB~ Wet-ten aus der Literatur verglichen. Die oberein- 
stinunung ist gut. Im Mittel liefert die Theorie Schichtdicken, die urn etwa 10 Prozent grosser sind als die 
experimentellen. Diese Abweichung wird vorwiegend der Annahme konstanter K&per- und Schichtober- 
fllchentemperatur zugeschrieben. 

Der WSirmeiibergangskoeffiient ist ein Hauptfaktor im Fliessbettbeschichtunasnrozess. Die in der 
Literatur gegebenen Reschichtungsdaten liefem gewijhnlich nicht den W&rmeiiber@ugskoeflizienten im 
Fliessbett Eine grafiihe Methode zur Abschlttzung des W&rrnetibergangskoeften wurde fiir Versuche 

mit angegebenen Werten der Enddicke entwickelt. 

AHHOT~Q~X~~-B Aauuohr nccne~osanuu nonyueuo Teoperusecuoe cooTriomenne memuy 
TOumnHOR no~pbr~~fr npenmera, norpy~enaoro n ncea~oorunHteuubrt cnott Marepuana 
,,OKp,$TW-, , II @G3RWCHkfMA CBOiCTBaMu CnCTeMht. 
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Teopws IIOKPbITIIR R IICeB~OOHGUKeHHOM CJIOe pEl3pEl60TaH3 H3 WHOBe IIKTWpaJIbIIOrO 

TeIUIOBOI'O banarica npki peurewH sagasa TeIUIOIIpOBO~HOCTH c no~Bwx;Koti rpawqeti IlPhl- 
MeHLlTeJlbHO K IIJIeHKe IIOKPbITHH. rIPA 3T0~ pacnpegeneHHe TeMIIeptITJ'pbI KKyTJ,tI nnclrKM 

nOKpbITWI ItpefiCTaBneHO IIOJIMHOMOM BTOPOti CTefleHII. 

CpaBHeHIW TeOpeTRWCKOPO peIIIeHkIR C 3KCIEpMMeHTaJIbHLIMH HaHHbIMLI, npHBeJ(eHHbLMM 

B nwepaType, noKasan0 xoporrree cooTBewTBLIe. Pacqewan Tonmnna noKpbITw npesbwaw 
aKCnepllMeHTanbHOe3HaYe~lHeBCpe~HeM Ha10°~.~TOOTKJIOHeHlle06~RC~IReTCR,~OC~rOBH~.n, 

IIpkiHRTbIM B TeOpllll AOIIyIUeKMeM 0 IIOCTOIIHCTBe TeIIMepZlTypbI IIOBepXHOCTIl lI3~eJIHR II 

nJIeHO‘lHOr0 IIOKPIJTWI. 

~03@j,H~HeHT TeIIJIOO6MeHa RBJIReTCR OCHOBHbIM @KTOPOM B IIpO~t?CCe IIOKPbITIlH B 

nCeB~OOW0KE!HHOM CJIOe. B JIMTepaTypHbIX AaHHbIX n0 nOKPbITHIIM KO3@&IIJ~eHT TRIIJIO- 

06MeHEl B IICeB~OOH(RHWHHOM CJIOe 06bISHO He IIpPIBOWTCH. Paspa6oTaH rp@I4YeCK~8 MeTO 

paCWTa K03$lIjjkI~At?HTa TeIIJlOO6MeHa AJIFI ElKCIIePHMeHTOB, B KOTOPbIX IIpEiBOfiMTCK OKOH- 

WTWIbHWI TOJIJQllHa IIOKPbITIIFI. 


