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Abstract—This study presents a theoretical relationship between coating thickness on an object immersed
in a fluidized bed of coating material and the physical properties of the system.

The theory of fluidized bed coating was developed using the heat-balance integral in solving the problem

of heat-conduction with a moving boundary as applied for the coating film. In developing the theory, the
temperature profile within the coating film was represented by a second-degree polynomial.

The theoretical solution was compared with experimental data given in the literature. The agreement is

good. On the average, the theory predicts coating thicknesses that are higher than the experimental ones by
about 10 per cent. This deviation is attributed mainly to the assumption of constant object and coating
film temperature made in the theory.

The heat-transfer coefficient is a major factor in the fluidized bed coating process. Coating data reported

in the literature do not generally give the heat-transfer coefficient in the fluidized bed. A graphical method
for estimating the heat-transfer coefficient was developed for experiments where final thickness data are
reported.

NOMENCLATURE

o (T = T.). [h°F/E]

. h . .
biot number, — X , dimensionless;

K

specific heat of coating material,

[Btu/Ib°F];

heat-transfer coefficient, [ Btu/hft? F];

thermal conductivity, [ Btu/hft° F];

immersion time [h];

softening point of coating material

[°F];

object temperature [ °F];

fluidized bed temperature [°F];

final coating thickness [ft];
coating thickness [ft];

density of coating material [1b/ft];

thermal diffusivity, [ft?/h];

dimensionless temperature,

T, - T,

T, - T,

INTRODUCTION

THE fluidized-bed system for coating metals
with plastics has developed from a laboratory
curiosity barely thirteen years ago to a routine
process in operation today in more than 360
major companies [7]. Applications are in-
creasing in the appliance, chemical processing,
electrical, power distribution and pipeline fields.

In the fluidized-bed coating process, a fusible
polymeric resin in powder form is applied to
the surface of an object that is immersed in a
bed or chamber of powder through which a
current of gas is passed. The gas serves to
levitate the resin powder in such a manner that
it resembles a boiling liquid in appearance. The
object is heated to a temperature high enough
above the melting or softening point of the
resin so that, after the object is removed from
the heat source, it retains enough heat on its
surface to melt the resin powder particles,
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which then stick fast, melt, and flow together to
form a coating.

In fluidized-bed coating, there are a number of
variables that can affect the thickness and
uniformity of coating layers applied to the
objects. The major variables affecting the thick-
ness of coating layer are object temperature,
immersion time, bed temperature, velocity of
fluidizing gas, particle size, shape and size
distribution of the resin powder, and the
physical properties of object, powder and
carrier gas.

In spite of the widespread use of the fluidized-
bed coating process and the many experiments
done, no coating theory has been developed to
date. In the present paper, an attempt has been
made to present a theory that will correlate the
coating thickness with the other coating para-
meters.

FLUIDIZED-BED COATING—STATEMENT OF THE
PROBLEM AND ASSUMPTION

The discussion presented in this paper deals
with the growth of coating films on vertical
plates in a fluidized bed. We consider one-
dimensional heat conduction in a coating film
that extends from x = 0 to x = X{(t). The face
x =0 is the object surface. If the surface
temperature, T;, is at or above the melting or
softening point, T,, the coating commences.
If the surface temperature, T;, of the film drops
below T, the growth of the coating film stops
and X(t) remains constant. The thickness of
the coating film X(z) as a function of time is the
quantity we wish to find.

The equation describing the process is as

follows:
or o | or
with boundary conditions
T0,0)=T,> T, 2

7O, =T, 3)
Tx (0.1 = Ti) (4)
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oT
—k— =hWT, — Ty)
0X | = x¢) (
axX(

+pdT; -~ T,) r

(5)

Equation (5) expresses the fact that heat
conduction at the surface of the coating film
equals the heat flow into the fluidized bed by
convection plus the heat absorbed by the bed
particles that adhere to the object and form the
film. In this energy balance, we neglect the heat
loss by radiation. It is apparent that the con-
vective transfer of heat far outweighs all other
types of heat transfer in a fluidized bed system.

The essential difficulty in the problem is in
the determination of the unknown moving
boundary, X(t). This is a non-linear problem
because it involves a moving boundary whose
location is unknown a priori. We were unable to
treat it in an exact analytical manner; thus, we
had to choose between alternative methods of
either using a high-speed computer or of finding
an approximate solution under some simplifying
assumptions. The latter course was taken.

In the present paper the discussion is limited
to cases where the following assumptions apply:

1. The thermal properties of material, p, ¢, k,
are constant for a particular material
during the coating.

2. The temperature within the fluidized bed
is uniform throughout and constant.

3. The temperature of the particles and the
fluid is the same.

4. The object temperature, T, is constant
during the coating process.

5. The surface temperature of the coating
film, T, is constant and equals the melting
or softening point of the material, T ,.

6. The thickness of films does not depend on
orientation of the coated object in the
fluidized bed.

7. The heat-transfer coefficient between the
object and the fluidized bed is constant
during coating.

8. Changes in the heat-transfer coefficient
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over the height of the object are negligibly
small.

9. The existence and uniqueness of T(x,t)
and X(t) are assumed.

Assumption 9 is adopted from the classical
moving boundary problem known as the Stefan
problem [3].

The most questionable assumption is No. 4.

In reality the temperature of the coated object
decreases during the coating process. The
assumption of constant T, is equivalent to that
of a large heat reservoir kept isothermally. In
many applications of fluidized-bed coating the
condition of a constant-temperature reservoir
can be approximated. In most cases a plastic
powder which is a good insulator is used to
coat a metal object—a good conductor. Thus,
the assumption of constant temperature within
the metal solid is reasonable. In those cases
where this assumption does not hold, such as in
coating of thin wires, the present solution can
be viewed as an upper bound on the coating
thickness.

Using the assumptions made above, the equa-
tions describing the process are:

66—7; = aaa—g— (6)
with the boundary conditions
70,0)=T, > T, M
TO,y=T,, (8)
T(X(0),) =T, )
_k% =M= T
+pdT; — Ty) dTXt(t—) (10)

These equations can be further limited to a
narrower class of heat-transfer problems by
neglecting the convective term in equation (10).
This will be done later on in the solution of a
special case, in order to demonstrate a limiting
behavior of the general solution.
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APPROXIMATE SOLUTION OF THE FLUIDIZED
BED COATING PROBLEM

As mentioned above, the heat transfer prob-
lems involving a moving boundary are non-
linear, and, except in very special cases [1], can
be solved either by using high-speed computers
or by some approximate technique. In this
paper, we solve the heat-transfer problem in
fluidized-bed coating by using the heat balance
integral method [2]. For the one-dimensional
case, the equation determining the thickness of
the coating film reduces to an ordinary differen-
tial equation when this method is applied. Thus,
it can be solved analytically or numerically.
These solutions, although not exact, are accurate
enough to be of practical use. We may also note
that our main interest is the determination of
film thickness as a function of time, rather than
the temperature distribution in the film. Minor
variations in the temperature profile inside the
film are of secondary importance to the build
up of film thickness taking place on its surface.

Returning to the mathematical problem, we
now multiply both sides of equation (6) by dx
and integrate from x = 0 to x = X(¢).

(11)

Equation (11) is called the heat balance integral.

Applying Leibnitz’ rule on the left-hand side
of equation (11) and integrating the right-hand
side, one obtains

X
d X
4 J Tax - 7,20
4]
oT oT
=a[3; _ axl ] (12)
x=X(@) x=0



1100
Combining equation (12) with (10) results in

X()
oX(1)

d
Tdx = T,
§ X ot

dr
0

-t W
pc x=0

dx

Now we assume that the temperature profile
within the film can be represented by a second-
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and 0 is a dimensionless temperature defined as:

o= L= T

Physically 6 represents the driving force for the
coating process. The coating will not take place
at 8 = 0 and the larger 8 the higher the coating
rate.

To find a relationship for the coating thick-
ness, X(t), as a function of time, we integrate
equation (13) after substituting the expression
for T into it and performing the necessary
algebra. The resulting time-thickness relation-

ship is:
h (h
xo 1 on B s iR E————-§<Eé_2>
5 [0 TRé I TR — s (18)
t= p EdéE.
$ 40+2 =328~ FQ

degree polynomial in the form:
T=a+ b[X(t) — x] + c[X(t) — x]* (14)

where the coefficients a4, b, ¢, may depend on
time t. Since there are three coefficients in
equation (14), three conditions are necessary.
Equations (8) and (9) constitute two conditions ;
the third one is the combination of equations
(6), (9), and (10). Substitution and simplification
results in the following expression for the
temperature profile which is consistent with the
boundary conditions

T=T;+3(T; - T,) [g X(t) + F(x) — 2]
x 1
[N A

[hXt F(x) — 2 20] [1 x [ (15)
% ®+ Fx)—2 - X0
Where

F(x) =\/{[% X(t) — 2]2 + 89} (16)

The integral in equation (18) can most easily
be evaluated by graphical integration.

When the denominator of equation (18) is
set to equal zero, the value of the integral, or
the time will be infinity. This means that the
growth of coating film stops and that the final
coating thickness, X , is reached. Thus, for final

thickness
h h 2
40+2—-3EXI— -X;,—-2) +80}=0.
(19)

Introducing the Biot number, Bi = (h/k)X [,

into equation (19) results in
46 + 2 — 3Bi — J[(Bi — 2> + 80] = 0. (20)
Solving equation (20) we get the very simple
relationship between the Biot Number and
dimensionless temperature
Bi=1¢6 (21)

or

h Tw - Tf

2x, = : 22
Xs T, — T, (22
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From equation (21), we see that, for a given 6,
the Biot number is fixed and is equal to it. This
means that the final thickness is proportional
to k and inversely proportional to h. In other
words, a plot of X ; vs. k will give a straight line,
while X  vs. h will yield a hyperbola. Equation
(22) may be used for finding the heat-transfer
coeficient in the fluidized bed from experimental
data. The detailed procedure is described in the
Appendix.

Equation (18) contains three dimensionless
groups necessary to define the problem. (h/k) X
X/\/(at) and 0. The group (h/k) X is essentially
a dimensionless film thickness. However,
X/\/(at) is not a convenient group, as it lumps
together the dependent variable X with the
independent variable ¢. To overcome this diffi-
culty we eliminate X between the first two
groups and come up with a dimensionless
time [h?/pck]t. Now we are ready to plot the
results of the graphical integration of equation
(18) as dimensionless film thickness versus
dimensionless time with the dimensionless tem-
perature 6 as a parameter. This has been done

501
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in Fig. 1. This figure is the most general plot of
the solution. Figure 2 is more explicit. It presents

2-0r
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I'Z
(el

F1G. 1. Dimensionless thickness as a function of dimension-
less time with @ as a parameter.
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FI1G. 2. Plot of coating thickness (X) vs. at for various h/k
and § = 1.
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the coating thickness as a function of at with
h/k as a parameter for the special case of 8 = 1.
The heat conductivity k is a property of the coat-
ing material that cannot easily be changed. The
heat-transfer coefficient h, however, can be
changed quite readily by changing any one of
the parameters of the fluidized bed, such as the
air velocity. Figure 2 shows that the effect of
the heat-transfer coefficient on the coating
thickness is very pronounced. The higher the
heat-transfer coefficient, the thinner the coating
thickness because of higher heat loss to the
surroundings.

To demonstrate the sensitivity of the solution
to various parameters, we plotted the coating
thickness vs. immersion time for typical working
conditions. Figure 3 presents coating thickness

50

40}
351
7,2500°F

30F

251

20
7,=410°F

Coating thickness, Xx 103, in

#=34 Blu/hft2oF
k =0-097 Btu/hH°F
a=0-00286 ft¥h
7,2298°F

T 75°F

1 L L i L J

0 5 10 15 20 25 30 35
Immersion time,#, s

Fi1G. 3. Effect of immersion time (¢} and object temperature

(T,) on coating thickness (X) for a typical coating process.

vs. immersion time curves for various object
temperatures. From this Figure it is obvious
that the coating thickness is a strong function
of object temperature. The object temperature
has a more pronounced influence on coating
rate in the case of long immersion times.

CHAIM GUTFINGER and W. H. CHEN

A plot of final coating thickness, X, vs.
softening point, T, with the heat transfer
coefficient as a parameter is shown in Fig. 4.
As seen in this figure, the change in final coating
thickness with the softening point of the coating
material is more pronounced at lower heat-
transfer coefficients.
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F1G. 4. Final coating thickness (X ;) as a function of softening
point of coating material (T ) for various heat transfer
coefficients (h).

From equation (18), it seems that the para-
meters that affect the coating thickness are only
the object temperature, fluidized-bed tempera-
ture, and the properties of the coating material.
Actually, there are some parameters that affect
the coating thickness indirectly because the
heat-transfer coefficient is governed by the fol-
lowing factors [5]:

(1) Properties of the materials
(a) Fluidizing gas : thermal conductivity, den-
sity, viscosity.
(b) Fluidized powder: thermal conductivity,
shape, size, size distribution, density, speci-
fic heat.
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(2) Design of fluidized bed

Location and geometry of heat transfer
surface, size of fluidized bed

(3) Operating conditions

Flow rate of fluids, feed or recycle rate of the
powder, concentration of the powder in the
bed, temperature level and magnitude of the
temperature driving forces, etc.

Thus, these variables are indirect factors that
can affect the coating thickness.

SOLUTION FOR THE CASE OF NO CONVECTION

In this section, we derive the solution for the
coating thickness for the case where heat
transfer by convection into the fluidized bed
can be neglected. This solution will provide an
upper bound on the coating thickness that can
be achieved in fluidized-bed coating ; that is, one
can find what is the maximum coating thickness
that can be obtained by changing the condition

201

0-5+

. . . . L
0 05 10 15 2.0 25
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F1G. 5. Dimensionless coating thickness as a function of
dimensionless temperature for no heat convection.

of fluidization in the direction of reducing h.
Letting b = 0 in equation (18), we get

x(t)
(1/30) [20 + 5 + /(20 + 1)]

= 0+2-2J20+ 1)

Ede.
(23)
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Integrating and rearranging, we get

X _[12[2o+1—\/(29+1)] *(24)
204+5+J20+1) [

J)

A plot of X/,/(xt) vs. 6 is shown in Fig. 5.
Looking at equation (24), we see that, for a given
6, X/\/(«t) is a constant. This means that the
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F1G. 6. Plot of coating thickness (X) vs. immersion time ().
Comparison between theory and experimental data of
Pettigrew [6].

coating thickness is proportional to the square
root of time. For this case there is obviously no
final thickness, as for constant object tempera-
ture and no heat convection to surroundings the
thickness of the film will grow indefinitely.

COMPARISON OF THE THEORETICAL SOLUTION
WITH EXPERIMENTAL DATA

The theoretical solution for the coating thick-
ness was developed under the simplified assump-
tions discussed above. In this section we com-
pare the simplified theoretical solution with
some experimental data from the literature.
This comparison will show us whether or not
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the approximate theoretical solution can pro-
vide answers for practical coating problems.

Experimental studies of fluidized-bed coating
processes were carried out by Pettigrew [6],
Richart [7], and Lee [4]. In reporting the
experimental data, Pettigrew gave more details
on the operating conditions than the others,
Thus, the comparison of the theroetical solution
and Pettigrew’s experimental data is straight-
forward. while, for the other data, one has to
estimate some of the coating parameters.

The experimental data given by Pettigrew
are shown as coating thickness vs. immer-
sion time in Figs, 6 and 7 with the coating
thickness calculated from theoretical equation
(18). The operating conditions are

30p

£ 255
-

Q
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x
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[

@

[

-

L2

£

- 2

o> £ =525 Btu/hit? oF
£ 2 =0-00286 f17h

k ¥ 0-097 Btu/hft°F
8 T,=510°F

7,=298°F
To=75°F
. . . A ; L )
0 5 10 15 20 25 30 35

Immersion time, #, s

FiG. 7. Coating thickness (X) as a function of immersion
time (/). Comparison between theory and experimental
data of Pettigrew [6].

1. Coating material.
The experiments were performed using
Corvel vinyl resin VCA-1289.

2. Object material and size.
The objects were made of 4 x 3 x ¢ in.
cold-rolled steel.

3. Preheat cycle.
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The preheat temperature is 650°F for
Fig. 6 and 550°F for Fig. 7.

4. Final temperature during coating.
The object temperature is 590°F for data in
Fig. 6 and 510°F for those in Fig. 7.

5. Fluidizing air velocity.
The air velocity is 49 ft/min.

As mentioned above, the heat-transfer coeffici-
ent is a major factor in the fluidized-bed coating
process. The coating data reported in the
literature do not generally give the heat-transfer
coefficient in the fluidized bed ; thus, we have to
estimate the heat-transfer coefficients of fluid-
ized beds from their operating conditions. The
heat-transfer coefficient used in the calculation
of the theoretical solution from equation (18)
as presented in Figs. 6 and 7 is found by a
graphical method from experimental data of
final coating thickness. The detailed proce-
dures are described in the Appendix. The value
of the heat-transfer coefficient used in Figs. 6
and 7 is 52-5 Btu/h ft>°F. Richart's [7] experi-
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F1G. 8. Plot of coating thickness {X) vs. immersion time ().
Comparison between theory and experimental data of
Richart [7].
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mental data are shown as plots of coating thick-
ness vs. immersion time in Figs. 8 and 9
together with the curves for coating thickness
calculated from equation (18). The operating

35(
o]
30}
[
£ 28l
-
Q
»
X 20}
[’
173
@
=
]
= 5
> 5 =34 Bru/hfi°F
= a 2000286 fi%7h
3  =0-097 Btu/hft °F
(SIS 7,=500°F
7,2290°F
Too=T5°F
5
1 W - T— L 1 N1 J
0 5 ) 15 20 25 30 35

Immersion time,’, s

FIG. 9. Effect of immersion time (¢) on coating thickness (X).
Comparison between theory and experimental data of
Richart [7].

conditions are shown in the figures. Since
Richart’s [7] experimental data do not give
final coating thicknesses, we couldn’t find the
heat-transfer coefficient by a graphical method
as we did in the case of Pettigrew’s [6] data.
Thus, we used the operating conditions given by
Richart [7] to estimate the heat-transfer coeffici-
ent from the literature. We found the heat-
transfer coefficient for similar conditions from
Mickley and Trilling [5] as 34 Btu/h ft?>°F and
used this value to calculate coating thicknesses
shown in Figs. 8 and 9.

As seen in Figs. 6 through 9, the agreement
between the theoretical predictions of equation
(18) and the experimental data given in the litera-
ture is good. For object temperature, T, =
600°F, the coating thicknesses predicted by
theory are, on the average, 10 per cent higher
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than experimental data; for T, = 510°F, they
are 12 per cent higher. The maximum deviation
in coating thickness was less than 30 per cent.
The higher thickness predicted by theory is
attributed to the assumption of constant object
and coating film surface temperatures. Other
factors that may account for deviations between
the theory and the experiments are the uncer-
tainty of the heat-transfer coefficient, and the
temperature profile within the coating film
represented by a second-degree polynomial. As
seen in Fig. 2, the coating thickness is a strong
function of the heat-transfer coefficient. A small
change in the heat-transfer coefficient will have
a pronounced influence on the coating thick-
ness. Since Richart’s [7] operating conditions
were not identical to those of Mickley and
Trilling [5], the heat-transfer coefficient found
from the literature was not very accurate. This
could certainly introduce some error into Figs.
8 and 9. One could expect better agreement
between theory and experiment if the heat-
transfer coefficient data were available. Relaxing
the assumption of constant object and coating-
film surface temperatures could also improve
the validity and range of the theoretical solution,
but it would do so at the expense of simplicity.

DISCUSSION AND CONCLUSIONS

In the present study an attempt was made to
develop a theoretical relationship between film
thickness in fluidized-bed coating and the
physical properties of coating material, the
object temperature, the fluidized-bed tempera-
ture, and the coating time. The theoretical
solution was compared with experimental data.
As seen in Fig. 6 through 9, it can be stated that
this attempt was successful.

The weak points in the developed theory were
the following assumptions:

1. The object temperature is constant.

2. The surface temperature of the coating film
is constant and equals its softening point.

3.The temperature profile within the coating
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film is represented by a second-degree
polynomial.

Assumption 1, which probably holds in the
case of short immersion times, is questionable
for long immersion times.

Assumption 2 is a very questionable assump-
tion in the developed theory. The temperature on
the surface of the coating must remain higher
than the softening point of the polymer if the
coating is to continue to build up.

Following Goodman [2], it is expected that
a cubic temperature profile within the coating
film would give a considerably more accurate
solution than that using Assumption 3.

The following conclusions may be drawn
from the present study:

1. The fluidized-bed heat-transfer coefficient
is the most significant factor in the coating
process. A small change in the heat-¥ransfer
coefficient (see Fig. 2y will produce a large change
in thickness. The smaller the heat-transfer
coefficient, the thicker the coating film. The
maximum coating thickness is predicted by
equation (25) which was derived for the limiting
case of no heat transfer to the fluidized bed.

2. We can control the thickness of the coating
film as a function of time by adjusting the object
temperature, the fluidized-bed temperature, or
the heat-transfer coefficient. The heat-transfer
coefficient is governed by the properties of
fluidizing gas and fluidized particles, the design
of the bed, and the operating conditions. All
these design parameters can be controlled and
modified to suit the coating problem at hand.

3. All portions of the object to be coated do
not have equal residence times in the bath due
to immersion and withdrawal time. The easiest
way to achieve uniform coatings is to choose
working conditions, such that the coating thick-
ness becomes a weak function of time. One,
therefore, should work in the flat regions of the
curves given in Fig. 1.

4, The predicted coating thickness for higher
object temperatures is better than that for lower
object temperatures. This is seen in Figs. 6 and 7.
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5. The predicted coating thickness is slightly
higher than experimental data because of the
assumption of constant object and coating sur-
face temperature. Due to the latter assumption,
larger deviations are expected with objects
having a relatively high surface to volume ratio,
such as in thin plates. For these cases, one would
have to replace the constant object temperature
with a total heat balance performed on the ob-
ject. Although the problem appears easy in
principle, it is involved enough as to prevent us
from obtaining a simple solution to it. Thus,
this problem is left for a future effort.

We feel that at present the solution obtained
is accurate enough and simple enough in order
to attract the practising coating technologist.
On the other hand, it is basic in its approach
and the assumptions made, though robust, are
reasonable and pass the test of experiment.
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APPENDIX
Method of Finding Heat-Transfer
Coefficients from Experimental Data
As mentioned above, if data of the final
thickness of film vs. object temperature are
available, we can find the heat-transfer coeffic-
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ient, h, directly from the experimental data,
The discussion presented in this Appendix
provides a method of finding the heat-transfer
coefficient from experimental data.

Under the assumption we made above, the
energy balance equation at the surface of the
coating film is

oT
—k—=HKT,-T

k ax ( f cn)
0X(t)

ot -’

When the coating film reaches its final thick-
ness, the growth of coating film stops and
equation (A.1) becomes

oT

+ pdT; — T.) (A1)

(A2)
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Equation (A.2) expresses the fact that heat
conduction at the surface of the coating film
equals the heat flow into the fluidized bed by
convection.

Integrating equation (A.2) from x =0 to
x = X, and rearranging, we obtain

h

Equation (A.3) can also be obtained by
rearranging equation (22).

If we plot the object temperature T,,, versus
the final thickness X/, a straight line is obtained.
The intercept of this line yields 7, and its
slope—the heat-transfer coefficient h.

Résumé—Cette étude présente une relation théorique entre I'épaisseur du revétement sur un objet immergé
dans un lit fluidisé du matériau du revétement et les propriétés physiques du systéme.

La théorie du revétement par lit fluidisé a été exposée en employant intégrale du bilan de chaleur pour
résoudre le probléme de la conduction de la chaleur avec une frontiére mobile appliqué au revétement.
Dans I’exposé de la théorie, le profil de température dans le revétement a été représenté par un polynéme

du second degré.

La solution théorique a été comparée avec un bon accord aux résultats expérimentaux donnés dans la
littérature. En moyenne, la théorie prédit des épaisseurs de revétement qui sont plus élevées que les valeurs
expérimentales d’environ 10 pour cent. Cette déviation est attribuée principalement & hypothése faite
dans la théorie d’une température constante de I'objet et de la surface du revétement.

Le coefficient de transport de chaleur est un facteur principal dans le processus de revétement par lit
fluidisé. Les résultats sur le revétement, signalés dans la littérature ne donnent pas généralement le co-
efficient de transport de chaleur dans le lit fluidisé. Une méthode graphique pour estimer le coefficient
de transport de chaleur a été exposée pour des expériences ot 'on donne les résultats pour 'épaisseur

finale.

Zusammenfassang—Diese Untersuchung liefert die theoretische Bezichung zwischen der Beschichtungs-
dicke eines Korpers, der in ein Fliessbett aus Beschichtungsmaterial getauscht ist und den physikalischen
Eigenschaften des Systems. Die Theorie der Fliessbettbeschichtung ergab sich mit Hilfe des Wirme-
bilanzintegrals bei der Losung des Problems der Wirmeleitung mit bewegter Grenze fiir die Beschichtung,
In der Theorie wurde das Temperaturfeld in der Beschichtung durch ein Polynom zweiten Grades

wiedergegeben.

Die theoretische Losung wurde mit experimentelien Werten aus der Literatur verglichen. Die Uberein-
stimmung ist gut. Im Mittel liefert die Theorie Schichtdicken, die um etwa 10 Prozent grosser sind als die
experimentellen. Diese Abweichung wird vorwiegend der Annahme konstanter Kérper- und Schichtober-

flichentemperatur zugeschrieben.

Der Wiarmeiibergangskoeffizient ist ein Hauptfaktor im Fliessbettbeschichtungsprozess. Die in der
Literatur gegebenen Beschichtungsdaten liefern gewShnlich nicht den Wirmeiibergangskoeffizienten im
Fliessbett. Eine grafische Methode zur Abschiitzung des Wirmeiibergangskoeffizienten wurde fiir Versuche

mit angegebenen Werten der Enddicke entwickelt.

ABHoTAIr—B  [aHHOM MCCTEZOBAHUM TONYYEHO TeOPeTHHECKOe COOTHOUIEHWE MEMLY
TONNMHOK HOKPHTHA INpeAMeTa, NOTPYMKEHHOTO B ICEBIOOMMMMEHHHIN CJIOH MarepHasia
HNOKPHTHA, ¥ (UBNIECKUMM CBOKCTBAMM CHCTEMBEL.
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Teopusi NOKPHTUA B INCEBIOOKUIKEHHOM CJI0e pa3paboTaHa Ha OCHOBE HHTErpasbHOro
TeIUIOBOro Gasanca NMPH PelIeHNM 33Ja4H TeIJIONPOBOAHOCTH ¢ MONBMMHON rpaHuued npu-
MEHUTEJIFHO K IIIeHKe NMOKpHTUA. IIpu aToM pacnpefeseHue TeMIepaTypel BHYTPH MJICHIH
AOKPHTAA NPEJCTABIEHO TIOJMHOMOM BTOPOMH CTenmeHu.

CpaBHeHNe TeOPEeTUYECKOr0 PEIIeHUA C IKCOCPUMMEHTAJILHHMU JAHHBIMH, ITPUBEIEHHDIM I
B JIUTEPATYDE, MOKA3AJI0 XOpOIIee COOTBETCTBYE. PacueTHas TONIIMHA MOKPBHITIHA IPEBHIIAET
DKCIIePHMEHTAIBHOe 3HaYeHNe B cpefHem Ha 10 9. 9T0 OTEIOHEHHE O0BACHALTCA, B OCHOBHOM ,
NPUHATHM B TeOPUM AOMYIEHMEM O MOCTOAHCTBEe TeNMepaTypHl MOBePXHOCTH H3Nedud N
MJIGHOYHOTO MOKPHITHA.

Hosdpduunenr TenmoobMeHa ABNAETCA OCHOBHBHIM (PAKTODOM B TIpOllecCe INOKPHITHA B
NICEBHOOKIDKEHHOM CJI0e. B IMTepaTypHBIX JAHHBIX IO NMOKPHITUAM KO3(QUIMEHT Tenimo-
o0MeHa B MCEBOOKMKEHHOM C¢Jl0oe o0n4HO He npusoaurca. Paspaboran rpadudeckuit MeTox
pacuera KoaguIMeHTa TenaoobMeHa [JIA DKCIEPHMEHTOB, B KOTODHIX NPUBOJUTCA OKOH-

JaTeJbHAA TOJUIMHA HOKPHITHA.



